DT
PT
Subscribe To Print Edition About The Tribune Code Of Ethics Download App Advertise with us Classifieds
Add Tribune As Your Trusted Source
search-icon-img
search-icon-img
Advertisement

Now, tiny 3D spheres to help combat tuberculosis

  • fb
  • twitter
  • whatsapp
  • whatsapp
featured-img featured-img
Photo source: Thinkstock
Advertisement

London

Advertisement

Scientists have developed a new 3D system to investigate what happens in a human body when tuberculosis develops, that may help identify new antibiotic treatments and vaccines against the infection.

Advertisement

The team, including researchers from University of Southampton and University College London in the UK, used an electrostatic encapsulation technique to make tiny 3D spheres within which human cells are infected with tuberculosis (TB) bacteria to generate conditions that more closely reflect events in patients.

Advertisement

The model allows the researchers to further investigate what happens in a human body when TB develops, with a long-term aim of identifying new antibiotic treatments and vaccines, researchers said.

We believe this is a really exciting development for the field of tuberculosis research. The 3D sphere can be created with a collagen matrix so it is more like a human lung," said Professor Paul Elkington, who leads the Southampton TB research group.

Advertisement

"This produces an environment that allows particular antibiotics that are important in treating patients, to kill the infection, which they cannot do in other 2D model systems.

"This system will help us speed up the process of finding treatments and vaccines for human tuberculosis, an infection that kills 1.8 million people per year," said Elkington.

Additionally the 3D spheres are able to prolong experiments for up to three weeks, more than four times longer than standard 2D model systems.

This gives researchers more information about how the infection develops and the effect of different interventions over time.

"We will use our 3D model to integrate engineering and biological approaches with clinical specimens to create an entirely new system of studying infection," said Elkington. — PTI

Advertisement
Advertisement
Advertisement
tlbr_img1 Classifieds tlbr_img2 Videos tlbr_img3 Premium tlbr_img4 E-Paper tlbr_img5 Shorts